Qian Lihua

Professor

Phone: (027)87543881

Email: Lhqian@hust.edu.cn

Academic Areas: Metal Functional Materials and Its Application

Research Interests: Metal Functional Materials and Its Application

 

Prof. Qian received his Bachelor Degree in Materials Science from Northeastern University, Shenyang, China, in 1998. He continued his study and applied for successive postgraduate and doctoral programs of study and received his Ph.D. degree in Materials Science from Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, in 2005. In 2005, he joined the Institute of materials research, Tohoku University, in Japan, as a Postdoctoral Researcher, engaging in the study of Surfaced Plasma of nanoporous materials and Enhanced Raman scattering. He worked as a Postdoctoral Researcher in University of Nevada Las Vegas in 2008 and engaged in the research of surface plasma of metallic nanomaterial and self assembly of nanoparticles. He is presently a Professor in the School of Physics, Huazhong University of Science and Technology, Wuhan, China, mainly engaging in the study of surface plasmon photonics of metal nanoparticles and the strain sensing mechanism of new materials. So far, he has served as the reviewer of international journals including Journal of American Chemical Society, Nano Research, ACS Applied Materials and Interfaces, Sensors and Actuators B: Chemical, Inorganic Chemistry et al. At present, there are more than 20 papers published in the international authoritative academic journals, such as Science, Scientific Reports, Advanced Energy Materials, Nano Research, Nanoscale, Applied Physics Letters and so on. The total number of citation is over 1500.

Academic Degrees

PhD in Materials Science, 2005, Institute of Metal Research, Chinese Academy of Sciences.

Bachelor Degree in Materials Science, 1998, Northeastern University

Professional Experience

2011-Present: Professor, Huazhong University of Science and Technology;

2008-2011: Postdoctoral Researcher , University of Nevada Las Vegas.

2005-2008: Postdoctoral Researcher, Tohouku University

Selected Publications

1. L. Z. Yi, W. H. Jiao, C. M. Zhu, K. Wu, C. Zhang, L. H. Qian, S. Wang, Y. T. Jiang, S. L. Yuan, “Ultrasensitive strain gauge with tunable temperature coefficient of resistivity,” Nano Research, in press, 2016.

2. S. Chen, L. Y. Meng, H. Y. Shan, J. F. Li, L. H. Qian, C. T. Williams, Z. L. Yang, Z. Q. Tian, “How To Light Special Hot Spots in Multiparticle-Film Configurations,” ACS nano, vol. 10, pp. 581-587, 2016.

3. C. Zhang, B. Huang, L. H. Qian, S. L. Yuan, S. Wang, R. Chen, “Electrochemical Biosensor Based on Nanoporous Au/CoO Core-Shell Material with Synergistic Catalysis,” Chem. Phys. Chem., vol. 17, pp. 98-104, 2016

4. L. Z. Yi, W. H. Jiao, K. Wu, L.H. Qian, X. X. Yu, Q. Xia, K. M. Mao, S. L. Yuan, S. Wang, “Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection,” Nano Research, vol. 8, pp. 2978-2987, 2015.

5. B. Huang, K. Gao, X. Liu, L. H. Qian, B. Shan, R. Chen, “Tuning the morphology and composition of ultrathin cobalt oxide films via atomic layer deposition,” RSC Advances, vol. 5, pp. 71816-71823, 2015.

6. J. W. Chen, K. Wang, K. Wu, L. H. Qian, H. Long, B. Wang, P. X. Lu, “Optimization of metal-enhanced fluorescence by different concentrations of gold-silica core-shell nanoparticles,” Optics Communications, vol. 349, pp. 180-184, 2015.

7. C. Zhang, L. H. Qian, K. Zhang, S. L. Yuan, J. W. Xiao, S. Wang, “Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudocapacitors and glucose sensors,” Journal of Materials Chemistry A, vol. 3, pp. 10519-10525, 2015.

8. Y. X. Jin, J. B. Xi, Z. Y. Zhang, J. W. Xiao, F. Xiao, L. H. Qian, S. Wang, “An ultra-low Pd loading nanocatalyst with efficient catalytic activity,” Nanoscale, vol. 7, pp. 5510-5515, 2015.

9. K. Wu, J. P. Zhang, S. S. Fan, J. Li, C. Zhang, K. K. Qiao, L. H. Qian, J. B. Han, J. Tang, S. Wang, “Plasmon-enhanced fluorescence of PbS quantum dots for remote near-infrared imaging, Chemical Communications,” vol. 1, pp. 141-144, 2015.

10. W. H. Jiao, L. Z. Yi, C. Zhang, K. Wu, J. Li, L. H. Qian, S. Wang, Y. T. Jiang, B. Das, S. L. Yuan, “Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing,” Nanoscale, vol. 6, pp. 13809-13816, 2014.

11. M. Fu, L. H. Qian, H. Long, K. Wang, P. X. Lu, Y. P. Rakovich, F. Hetsch, A .S. Susha, A. L. Rogach, “Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy,” Nanoscale, vol. 6, pp. 9192-9197, 2014.

12. S. Xiao, F. Xiao, Y. Hu, SL. Yuan, S. Wang, L. H. Qian and Y. Q. Liu, “Hierarchical Nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation, Scientific Reports,” vol. 4, pp. 4370, 2014.

13. C. Zhang, J. Li, S. S. Yang, W. H. Jiao, S. Xiao, M. Zou, S. L. Yuan, F. Xiao, S. Wang and L. H. Qian, “Closely packed nanoparticle monolayer as strain gauge fabricated by convective assembly at the confined angle,” Nano Research, vol. 7, pp. 824-834, 2014.

14. Z. Y. Zhang, F. Xiao, L. H. Qian, J. W. Xiao, S. Wang and Y. Q. Liu, “Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors,” Adv. Energy. Mater. Vol. 4, pp. 1400064, 2014

15. J. Chen, B. Shen, G. W. Qin, X. W. Hu, L. H. Qian, Z. W. Wang, S. Li, Y. P. Ren, L. Zuo,” Fabrication of large-Area, high-enhancement SERS substrates with tunable interparticle spacing and application in identifying microorganism at the single cell level,” Journal of Physical Chemistry C, vol. 116, pp. 3320-3328,2012

16. L. H. Qian, S. J. Zhai, Y. T. Jiang, B. Das, “Nanoscale convection assisted self-assembly of nanoparticle monolayer, Journal of Materials Chemistry,” vol. 22, pp. 4932-4937, 2012

17. L. H. Qian, R. Mookherjee, “Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering,” Nano Research, vol. 4, pp. 1117-1128, 2011

18. X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Applied Physics Letters, vol. 98, pp. 093701, 2011

19. L. H. Qian, B. Shen, G. W. Qin, B. Das, “Widely tuning optical properties of nanoporous gold-titania core-shells,” Journal of Chemical Physics, vol. 134, pp. 014707, 2011

20. L. H. Qian, B. Das, Y. Li, Z. L. Yang, “Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection,” Journal of Materials Chemistry, vol. 20, pp. 6891-6895, 2010

21. L. H. Qian, W. Shen, B. Shen, G. W. Qin, B. Das, “Nanoporous gold-alumina core-shell films with tunable optical properties,” Nanotechnology, vol. 21, pp. 305705, 2010

22. L. H. Qian, W. Shen, B. Das, B. Shen, G. W. Qin, “Alumina coating of ultrafine nanoporous gold at room temperature and their optical properties,” Chemical Physics Letters, vol. 479, pp. 259-263, 2009

23. H. T. Fang, X. Sun, L. H. Qian, D. W. Wang, F. Li, Y. Chu, F. P. Wang, H. M. Cheng, “Synthesis of tin (II or IV) oxide coated multiwall carbon nanotubes with controlled morphology,” Journal of Physical Chemistry C, vol. 112, pp. 5790-5794, 2008.

24. T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Applied Physics Letters, vol. 92, pp. 251902, 2008.

25. L. H. Qian, Y. Ding, T. Fujita, M. W. Chen, “Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures”, Langmuir, vol. 24, pp. 4226-4229, 2008.

26. L. H. Qian, A. Inoue, M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Applied Physics Letters, 92, 93113, 2008.

27. L. H. Qian, M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Applied Physics Letters, vol. 91, pp. 83105, 2007.

28. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Applied Physics Letters, vol. 90, pp. 153120, 2007.

29. L. H. Qian, K. Wang, H. T. Fang, Y. Li, X. L. Ma, “Au nanoparticles enhance CO oxidation onto SnO2 nanobelt,” Materials Chemistry and Physics, vol. 103, pp. 132-136, 2007.

30. L. H. Qian, K. Wang, Y. Li, H. T. Fang, Q. H. Lu, X. L. Ma, “CO sensor based on Au-decorated SnO2 nanobelt,” Materials Chemistry and Physics, vol. 100, pp. 82-84, 2006.

31. Y. Li, L. H. Qian, W. F. Li, C. N. Yang, X. L. Ma, “Growth of segmented ZnS nanocones induced by regular occurrence of twins structure,” Applied Physics Letters, vol. 87, pp. 183107, 2005.

32. L. H. Qian, Q. H. Lu, W. J. Kong, K. Lu, “Electrical res istivity of fully-relaxed grain boundaries in nanocrystalline Cu,” Scripta Materialia, vol. 50, pp. 1407-1411, 2004.

33. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian, K. Lu, “Ultrahigh strength and high electrical conductivity in copper,” Science, vol. 304, pp. 422-426, 2004.

34. J. Chen, W. Wang, L. H. Qian, K. Lu, “Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation,” Scripta Materialia, vol. 49, pp. 645-650, 2003.

35. L. H. Qian, S. C. Wang, Y. H. Zhao, K. Lu, “Microstrain effect on thermal properties of nanocrystalline Cu,” Acta Materialia, vol. 50, pp. 3425-3434, 2002.

Selected Cases

Awards and Honors

• National Natural Science Foundation of China. Grant No.51371084;

• National Natural Science Foundation of China. Grant No.91545131

• Specialized Research Fund for the Doctoral Program of Higher Education. Grant No.20130142120089

• Innovation Funding of HUST for International Collaborations. 2014ZZGH018

Courses Taught

• Thermal Physics;

• College physics;

• Magnetic physics.

Login and edit information